skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ionescu, AM"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This review paper delves into the concept of critical current density in high-temperature superconductors (HTS) across macroscopic, mesoscopic, and microscopic perspectives. Through this exploration, a comprehensive range of connections is unveiled aiming to foster advancements in the physics, materials science, and the engineering of applied superconductors. Beginning with the macroscopic interpretation of as a central material law, the review traces its development from C.P. Bean’s foundational work to modern extensions. Mesoscopic challenges in understanding vortex dynamics and their coherence with thermodynamic anisotropy regimes are addressed, underscoring the importance of understanding the limitations and corrections implicit in the macroscopic measurement of , linked with mesoscopic phenomena such as irradiation effects, defect manipulation, and vortex interactions. The transition to supercritical current densities is also discussed, detailing the superconductor behavior beyond critical thresholds with a focus on flux-flow instability regimes relevant to fault current limiters and fusion energy magnets. Enhancing through tailored material microstructures, engineered pinning centers, grain boundary manipulation, and controlled doping is explored, along with radiation techniques and their impact on large-scale energy systems. Emphasizing the critical role of , this review focuses on its physical optimization and engineering manipulation, highlighting its significance across diverse sectors. 
    more » « less
    Free, publicly-accessible full text available May 26, 2026